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A Remark on the Low-Temperature 
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We investigate the low-temperature phase diagram of the d-dimensional (d~> 2) 
solid-on-solid (SOS) interface constrained to lie above a rigid wall to which it 
is attracted by a constant force. We prove uniqueness of the Gibbs state and 
exponentially fast convergence (in the diameter of the domain) of the finite- 
volume expectation of local observables, for all values of parameters where 
uniqueness in the class of translation-periodic limit Gibbs states was established 
previously. These domains of uniqueness are bordered by lines on which the 
system undergoes a layering transition. 

KEY WORDS:  Gibbs state; SOS model; layering transition; uniqueness; 
FKG; cluster expansion. 

1. THE MODEL A N D  THE RESULT 

This paper continues the work of refs. 4 and 3, where the phenomenon of 
the layering transition was studied for the model defined by the formal 
SOS Hamiltonian 

H(cp)= Z (1) 
(x,x') x 

Here the height (spin) variable ~o x takes the values from 7/+ = { I, 2,...}, the 
external field h" is positive, the first sum is over all pairs (x, x') of nearest 
neighbor sites in 7/d (d~> 2), and the second sum is over all x e 7/d. Given 
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a configuration ~0 v~ (Z + ) v in a finite domain Ve Z d and a boundary con- 
dition q~ w ~ (7/+ ) v<, V" = 7/a\ V, the conditional Hamiltonian is 

(X ,A" ) :  X,X'  E V 

+ ~ Iq~,.-~x,l+h ~ cp.,. (2) 
( x , x ' ) :  x E  V, x '  E V" x E  V 

Here and below the sum 5-'+,.,_,) ........ ,~v is taken over all pairs (x ,x ' )  of 
nearest neighbor sites in V and the sum Y'.(x..,-,):.,-~ v,.,.,~w is taken over all 
pairs (x, x ')  of nearest neighbor sites with one site in V and other site 
in V". The corresponding partition function is 

s( Wl ~ . )  = ~ exp( -flO(cPvI q~w)) 
tp I , 

and the finite-volume Gibbs measure is defined by 

(3) 

( f (  ~O v) ) v.o,,,. = { ~  f(  ~o v) exp( - flH( q~ vl ~ v,- ) ) } / 3( Vl O v,- ) 

where fl > 0 is the inverse temperature. 
Denote by ~0 ~*~, k ~ 7/+, the constant configuration _~k~ _ k. Then: ( f i x  

T h e o r e m  D M .  141 
continuous functions 

(4) 

There exist a constant flo and a sequence of 

~v-h~( f l )>h?( f l )>  .-- > h * ( f l ) >  .. .  

such that for any fl/> fl0 and k e Z +: 

(i) In the interval h~(hF,(fl), h~_,(fl)) the model has a unique 
7/d-periodic Gibbs state generated by the boundary condition ~0 Ik~ and 
log 3( V[ ~Olv*,!) admits a convergent polymer expansion. 

(ii) For  h = h*(fl) the set of 7/a-periodic extreme limit Gibbs states 
consists precisely of two elements, generated by the boundary conditions 
(p(~ and (o(*+~; both log3(Vlcp~j~,)) and log~(Vl~(vk,. +11) admit a con- 
vergent polymer expansion. 

An improvement of this result was given in ref. 3. 

T h e o r e m  C M .  c3) For d = 2  there exists fl0 such that for all fl>~flo 
there are positive numbers Sh*~m~, .... t k ~r'SS k = l, with km.x = Lexp(fl/20,000)J, such 
that the following hold for k = 1 ..... km,x : 
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(i) �88 -4ilk <~flh~(fl) <~ 4e -4#k. 

(ii) If h*(f l )<h<h'~_l( f l )  [define h*(fl)= +or ] ,  then (a) there 
exists a unique Gibbs measure for the interaction (1), and (b) there exists 
Co(fl, h ) >  0 such that for any N>~ 18/h + l_J and cubic domain V of linear 
size N 

sup I(~o0)z.~,.,-(q~o)v.,~;,,. [ <<,e -c~ 

(iii) If h=h~.(fl), then both 1og3(V]~0~zk,!) and log-~(V[q~(~,. +~1) 
admit a convergent cluster expansion. Hence there are at least two distinct 
extreme Gibbs measures. 

Here and below, [_-I denotes the integer part. The improvement of 
ref. 3 over ref. 4 is the global uniqueness statement (ii.a) and the estimate 
of the dependence on the boundary condition (ii.b). Here we prove the 
following theorem. 

Theorem. There exist a constant flo and a sequence of continuous 
functions 

oo - h * ( p )  > h * ( f l )  > . . .  > h ~ ' ( p )  > . . .  

such that for any fl >/flo and k ~ 7/+: 

(i) In the interval h~(h~.(fl), h~_l(fl)) the model has a unique limit 
Gibbs state generated by the boundary condition (ptk) and log 3( VI q~,?) 
admits a convergent polymer expansion; moreover, there exists Cl(fl, h) > 0 
such that for any cube V of the linear size N >1 14d/h + l_J 

sup 1<~Oo> x<o,..c-- <(Po> v.,~;.,I ~ e  -c"p';')N 

(ii) For h=h~(f l )  the set of 7/d-periodic extreme limit Gibbs states 
consists precisely of two elements, generated by the boundary conditions 
q~(k) and r both log 3(V[ ~,'~kl~vcj and log Z ( V[ q ~  +l)),. admit a con- 
vergent polymer expansion. 

The difference between our theorem and one of ref. 3 is that we remove 
the restrictions k~kmax and d = 2 .  Comparing the methods of refs. 4 and 
3 and the present paper one may say the following. In ref. 4 the authors 
constructed a polymer expansion for log 3( V[ ~0~2) providing a complete 
proof for the case 

e -4/ffk + ,6'/100 ~ flh ~< e -4p(k - t ) - fl/100 
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The rest of the proof in ref. 4 is rather sketchy and, as was pointed out in 
ref. 3, contains a mistake. This mistake is corrected here in the Appendix. 
Many details skipped in ref. 4 can be found in ref. 3. 

The main achievement of ref. 3 is the control of a partition function 
with an arbitrary boundary condition. An arbitrary boundary condition 
produces a complicated boundary layer called a boundary contour which 
penetrates into the interior of V (see Section 8 for a precise definition). It 
was proven in ref. 3 that this boundary contour does not penetrate too 
deeply inside the domain. The result required a very detailed investigation 
of the geometry of this contour. 

In the present paper we combine some results and ideas in refs. 4 
and 3 with F K G  inequalities, which permits us to avoid the study of 
this complicated boundary contour for an arbitrary boundary condition. 
Instead we show that global uniqueness follows from uniqueness in the 
class of translation-invariant limit Gibbs states, which is much easier to 
establish. In addition we develop a new method for analyzing the 
boundary contour which requires only a minimal knowledge of its 
geometry. What one really needs is "good control" over the Gibbs state 
with stable boundary conditions cp~,~,? [for h~(h~,(fl), h~_l(fl))] and 
rough a priori estimates on the influence of unstable sites, qL,-, v~k, in the 
boundary condition, on the probability of the boundary contour. This 
good control is a simple consequence of the cluster expansion constructed 
in ref. 4 and a priori bounds are deduced from the Jensen and F K G  
inequalities. Remaining statements of our Theorem are simply borrowed 
from Theorem DM. 

If instead of h one considers h =flh as a parameter independent of 
fl, then it is not hard to check that the analog of the above Theorem 
describing the low-temperature phase diagram of the model is true. In 
the parameter space (fl, h) the high-temperature behavior of the model 
can also be understood: given h, there exists fl~ =fl~(h) such that for 
fl<fl~ the limit Gibbs state is unique and admits a high-temperature 
expansion. This high-temperature limit Gibbs measure can be easily con- 
structed as a small perturbation of the noninteracting system. Conse- 
quently each of the curves of the first-order phase transition constructed 
in the Theorem terminates at some point fl=fl~k~ as fl goes from 
to 0. 

The situation in the parameter plane (fl, h) is more complicated. We 
believe that for fl small enough one still has a unique limit Gibbs state, but 
this measure cannot be considered as a small perturbation of an independent 
field. There may also be a difference in the high-temperature behavior of 
the model for d =  2 and d>_-3, as is the case for the unconstrained SOS 
model without a field. 12"71 
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There exist many other models of the SOS type (see, e.g., refs. 1 and 
5). We believe that results similar to our Theorem are true for the class of 
models defined by the general formal Hamiltonian 

H(q~)= ~ U(l~o.,--~0,.,I)+~G(~o.,.) 
(x,.x") .v 

where U(. ) and G(.) are convex increasing functions from R + to R+. 

2. AN EQUIVALENT MODEL 

It is clear that the state ( .  > v,~r~ 
RHS of (2) by 

does not change if we replace the 

I~o.,-- q~,., I + 
( x,x' 1: .x', x' ~ I "  

Since 

Y. IIcp.,.-cp.,.,I-@.,.,)+h Y'. ~o.,. (5) 
(.'r .x'�9 V . x ' � 9  V c .~.-�9 V 

~ - q~"9 for ~o.,. < ~.,., I~o.,.-G, I - G . - -  (6) 
L~o,.- _c~.,., for q).,. >~ q3.,., 

it is natural, following ref. 3, to introduce the boundary condition 
~v,.= +co setting 

H(~ovlcc) = ~ Iq,.,.-q~.,-,I- ~ ~,,.+h ~ r (7) 
(_x', x '  ): .\', x '  �9 V (.x', x '  ): .x" �9 1 I .  A" �9 V c .x" �9 U 

and the boundary condition ~ v, = 0 setting 

g(q~vlO)= ~ I~o,.-~.,.1+ ~ r y ~o.,. (8) 
Ix. x' ): x. x' �9 V (.v, x' 1: x �9 V, x' �9 V" x �9 I," 

One can also consider a generalized boundary condition ~ v, with q~.,., 
{0} wT/+ w {oc}, x ' ~  V". In this case 

H(~ovl~v,-) = Icp.,--go.,-,l+h Z qo,. 
{ x , x ' ) :  x , x '  �9 V x � 9  V 

+ Y~ (1~0_,.-G,I- ~.,-,) 
I x ,  M) :  x � 9  I / , x '  �9 V"  

+ Z Z 
( x , x ' ) :  x � 9  V ,x"  �9 I t` .  ( x , x ' ) :  x � 9  V , x '  �9 V"  

and from now on we consider (9) as the definition of H(~pvl~vc).  

(9) 
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3. THE F I N I T E N E S S  OF THE P A R T I T I O N  F U N C T I O N  

For ~ w with ~.,., e {0} u 7/+, x ' e  V c, the finiteness of S( V[ c~ go) is evi- 
dent. The proof for the general case is given in Proposition 3.1 of ref. 3 and 
for the convenience of the reader we reproduce it below. 

For x e T~" denote by Q(x) some cube of the linear size k(4d/h)+ 1/ 
containing x. Consider a domain V such that for any x E V there exists 
Q(x) _c V. Decompose H(~ov[ oo) into the sum ~2~ i Hl~(~~ oo) with 

h 
H'"'(q, vloo)= ~" '  I~o.,.-q,,,I- K"' q,x+O ~ qL,- (10) 

Lv,.x"): .x-E V ,x '  ~ V (x,.v '}:  .x'~ V,x '  ~ V c . -  11 

where both ~-'~(i) a r e  taken only over (x, x') parallel to the ith coordinate 
axis. By the Schwarz inequality 

~o I, " =  I 

i =  I ~go I, 

1/2 

(11) 

Every factor Zv, ,exp[-2 f lHla(q)v[  Go)] is a product of one-dimensional 
partition functions of the form 

Y, exp[ - 2flH"l(cpL [ oo )] (12) 
tP L 

where L c Z  is a segment of the length greater than L(4d /h )+lJ .  For 
L =  [x', x"] and 2 such that ~o~ = min.,.~, ~o_~ we have 

m'~(q',-I~ = -q'.,.'+ E I~,.,.-,,.,.+,1 
x ~ x '  

+E h x"  

I~o.,--q'.,-+,l-~'x,,+ a E ~o,. 

h x "  

>/-~o.,., + I q,.,.,- ~o.~ I + I~o.~-q,.,.. I -  ,,.,.,, + a  _,.~,.,=. ~o.,. 

hf cPx = -2rp,  + 7t.,. = .,: 
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>i [ L I -  2 ~o.~ + .,:~.v cpx 

h x- 
~>~-~ E r (13) 

.x  = .xP 

where the last inequality holds for (h/2d)ILl/> 2, e.g., ILl >/L(4d/h)+ 1J. 
The finiteness of ~(V] m) implies the finiteness of S(V]~vc) for an 

arbitrary generalized ~ w because of the estimate 

H(cPv] m)<~H(cpvlCfiv~) ~< H(~o vl 0) (14) 

which is a consequence of 

- ~o,. ~< Iq,,.  - q L ,  I - @.,., ~< q,.,., ~o.,., q,,., ~ z + ( 1 5 )  

4. THE FKG INEQUALIT IES 

Introduce a partial order, ~<, on the configuration space by setting 
Cpv~<q~'v iff ~o,.~< cpl,. for all x~  V. A function f(Cpv) is called increasing if 
Cpv<~ qo' v implies f(q~v)~<f(cp'v). The F K G  inequalities (6) say that 

(g(q~v)f(qOv))v,o,, >~(g(~Ov))v.o,,c(f(~Ov))v,o,,~ (16) 

for any increasing f(cp v) and g(~o v) and for any boundary condition ~ w. 
For our model these inequalities are true because (9) satisfies the Holley 
condition (8) 

H(~ovl~v,.) + H(~o'vlOvO>~ H(cpv v qCvl~v,.) + H(q~v A Cp'vlOvc) (17) 

t l �9 I where Cpv v ~o v=max(q~,., q~i,-) and ~Ov ̂  q~v= m]n(q~.,., ~0.,.). 

5. M O N O T O N I C I T Y  IN THE B O U N D A R Y  C O N D I T I O N  
A N D  THE V O L U M E  

A standard consequence of the FKG inequalities is a monotonicity in 
the boundary condition(9): 

(f(q~ v)) v,~v,- ~< (f(~o v)) v,~;,c (18) 

for q~ v, ~< ~'w and increasing f (  ~o v). This implies that the states ( . ) v , o  and 
( " )  v,~ are extreme in the sense 

(f(CPv) ) v,o <~ (f(q~v) ) v,o,,c <~ (f(CPv) ) v,o~ (19) 

8 2 2 / 8 4 / 3 - 4 - 5  
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For these extremal states another standard consequence of the F K G  
inequality is a monotonicity in the volume(9): 

and (f(cP v) ) v,.o ~< (f(~o v)> w.o (20) 

(f(q, v)> v..~/-- (f(q, v)> v.,.~. 

for any increasing .f( q~ v) and V _  V ' c  V". 
Consider now the bounded increasing functions 

(21) 

, ,  f~o.,./m for q ~ x < m  (22) 
o-,. =~1  for cp.,.~>m 

It is not hard to see that the characteristic function/Iv.,.=,,,} is given by 

I "~ m m - -  1{~=11 =2a,.--2a~.,  I {~x=, ,  I =2nur,. - - ( m -  1) a.,. I - - ( m +  1) a~. '+ '  (23) 

Hence the correlation functions 

I F [  g.",-"~) , A _~ V (24) 
x e A  / V , ~ v c  

completely define the state ( �9 ) v.o,,c and monotonicity in volume implies in 
a standard way the existence and translation invariance of the states ( �9 ) o~ 
and ( - ) o .  

6. ESTIMATES OF PROBABILITIES 

This section contains a key estimate which allows us to handle the 
unboundedness of the spin variable. For  models with bounded spin 
variables the difference in the energy of a configuration with one boundary 
condition and the energy of the same configuration with another boundary 
condition different from the first one at n sites is of order const �9 n. Thus for 
any event its probability with the second boundary condition does not 
exceed that with the first boundary condition multiplied by the factor 
exp(2fl, const,  n). This is a rough but useful estimate which is clearly not 
true in our model, for an arbitrary event, because of the unboundedness of 
the spins. Nevertheless the estimate is still true for some events and these 
events appear to be sufficient for our purposes. To describe them denote by 
~k v a configuration from the set { - 1, 0, 1 } v. Fix k ~ Z +. Given ~, v, we say 
that rpg belongs to the class ~kv if sign(rp.,.-k) = ~x for all x e  V. Clearly 
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the class ~O v(q~ v) of the configuration ~o v is uniquely defined. Now we 
introduce the partition function 

~(Vl~w,  ~bv) = Y'. exp[-flH(~ovl~w)] (25) 

and the corresponding state 

(f(cpv)) v,o,.,..r { Y'. f(q~v)exp[-flH(cPvl~vc)] } /N(Vl~v , ,  qSv) (26) 
~oi,Eq~v 

The difference between (25)-(26) and (3)-(4) is only in the free 
measure. Hence the measure ( - )  v,~,.,..~), still satisfies the F K G  inequalities 
and the results of Section 5 are still valid for this measure. 

It is not hard to check that for large enough domains V, of the type 
considered in Section 3, 

and 

(~.,-) v,o,.,,~,,. ~ C,_(k, ~, h) (27) 

(q~,-> v.+~.~ <~ C3(fl, h) (28) 

(cf. Proposition 3.2 of ref. 3). Indeed, given x e V, take a cube Q(x) ~_ V. By 
the monotonicity in the boundary condition and the volume, we have 

( q~x) r.~v.O v 

~< < ~o.,.> e(.,.).~,~,, 

I [ " ]}/ = ~o,.exp - f l y '  g(;)(ee(.,.)[oo ) ~(Q(x)loo, Oe(.,.)) (29) 
tpQia. ) ~ ~bOlx) i = I 

An argument similar to one used in Section 2 shows that the denominator 
of (29) is finite.and greater than 1, while the numerator does not exceed 

x I-[ 2 exp - ~-~ ~o.,., ~< C2(k, fl, h) 
x" ~ Q l x ) \ x  ~.,., ~ L(Ox') 

(30) 
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where 

I [kl, k -  1] for ~.,. = - 1  
L(O.,_) = for ~,.,. = 0 

I, E k -  1, oo) for 0.,. = 1 

(31) 

Similarly one establishes the estimate (28). 
Given any generalized boundary condition ~ v~, define other boundary 

conditions ~ 0  and ~ v% as 

and 

o fO if cpx r k 
q~v~= (32) 

k if ~.,. = k 

{ k  if cp.,. r k (33) 
~v~= if c~.,. = k 

Denote by I~,,(~pv) the indicator function of the event ~Pve ~'v and intro- 
duce a shorthand notation 

( ' )  v.k = ( " )  v.r 

Then by the monotonicity in the boundary condition 

(Iq,,,(q~v))V.k Z(Vl~o~),O~) Z(Vl~,.) 
(1,~,.(q,v)>v.~,.,. S(Vl~v..,r S(Vl~0~,!) 

3( Vl #~,!, ~, v) z( Vl ~o) 

Obviously the second ratio is not less than 

(34) 

exp( , 
Ix, x'): x e  V,x'  e V", ~x' ~ k  

The first ratio can be estimated as 

(35) 

.---( Vl ~o ~.), r <) 

(x,x'): V , x ' e  V q ~ x ' ~ - k  V x e  ,~vc,~kv 

(x,x'): x e  V,x '  e Vq~a: ~ k  ,~Ovc,~bv 
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By the Jensen inequality the last expectation is greater than 

(x,.x~): x e  V,x '  e V c, 
Ox' r  

~> exp (--2fl  ~ C2(k, fl, h)) 
(x,x'): x E  V,x '  E Vq 

~x 'q :k  

From (34)-(37) we finally obtain 

( I~,v) v,o,,,,<~ ( I~,v) v, k exp (2fl ~, C4(k, fl, h)) 
(x,x'): x e  V,x'  ~ V r tp.v' v~k 

where C4(k, fl, h) = C2(k, fl, h) + k. 

(37) 

(38) 

7. U N I Q U E N E S S  

From now on we set, for a given h [h.i~h*(fl), n~Z+],  k=  
-[_[log(flh)]/4fl_] and accordingly change C2(k, fl, h), C4(k, fl, h) to 
C2(fl, h), C4(fl, h). For an arbitrary limit Gibbs state ( . )  the monotonicity 
in the boundary condition (19) implies 

(39) 

and the limit Gibbs state is unique whenever ( . )  ~ = ( . )  o. Take a cube V 
of linear size N and for any ~Jv, denote by 12(~bv) the union of the con- 
nected components of the set {xe V: ~.,.:~ 0} which are adjacent to V c. For 
any configuration ~Pv the set 12(cpv)=t2(ffv(~pz)) is called the boundary 
contour. Introduce the event g =  {~Oz: 112(~pv)[ > Nd-~ The only result 
from ref. 4 which we need for the uniqueness is the estimate 

( I~ )  v,k ~< exp[ -Cs(fl, h) Nd-~ Cs(fl, h) > 0  (40) 

which is valid because of the polymer expansion for ( . )  v.k constructed in 
ref. 4. Since the event r is defined in terms of ~ v, 

( I,~) v,r162 <~ ( I~) v,k exp (2fl 
(x,x'): x ~  V,x '  �9 VC,~x, ~ k  

~<exp[-  C6(fl, h) N a-~ ] 

C 4 ( f l ,  h ) )  

(41) 
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where ~vc is an arbitrary generalized boundary condition, C6(fl, h)= 
0.5C5(fl, h)-2flC4(fl, h)/x/~ and N is large enough. Bound (41) implies in 
the standard way r ' I the uniqueness in the class of Zd-periodic limit Gibbs 
states. As ( .  >o and ( .  > ~ are translation invariant, one obtains ( .  >o = 
(" > k = (" > ~ and hence global uniqueness. 

8. A S K E T C H  OF A N  A L T E R N A T E  P R O O F  
OF T H E  U N I Q U E N E S S  

In this section we apply the method going back to refs. 9 and I0. Con- 
sider the increasing functions 

Then by (19) 

.... �9 ( 4 2 )  

x ~ A  x ~ A  

x . ~ ' ~  A 0 

or equivalently 

~< < ~A (P"-- 1--[ a~ -'~) (43) 
A* .V E . 4  I ' ~  

0 4  a.,. - ~.,. Y'. (< e.,.> ~ - < e.,>o) (44) 
. o'~ : t E A  

where the positivity follows from (39). In particular, (q,o)o=(~Oo)o~ 
implies ( .  >o = (" > .~ and the uniqueness of the limit Gibbs state. 

Now we will show how the uniqueness can be deduced from (44) and 
the differentiability in h of the free energy of the system. Comparing the 
energies of the corresponding configurations, it is not hard to see that for 
any disjoint domains V' and V" 

and 

3 ( v ' 1 0 ) , z ( v " 1 0 ) ~ s ( v ' u v " [ 0 )  (45) 

3(W'l~).3.(V"lo~)~z(V'u w"[ ~ )  (46) 

Using standard subadditivity arguments, we find that (45) and (46) imply 
the existence of the free energies 

lim F(V,h[O), F(V,h[O)=IV[-' log3(V[O) (47) 
V .~ ~, l  
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and 

lira F(V, hI~),  F(V, hloo)=lVl-' log.~(Vloo) 
V ~  Z d 

(48) 

By Jensen's inequality and estimate (28) 

O >~ F( V, h lO) - F( V, h l oo ) 

= l i m  I VI- '  log (exp ( - 2 f l  ~ rp.,.) > 
V .-" Z d ( x , x ' ) :  x ~  V , x ' e  V c V . c ~  

>~ 'im IVI-'  < ( - 2 f l  }-', ~o_,.) > 
V /" Z d ( x . x ' ) :  x e  V , x ' ~  V c V . ~  

>/ lim I V l - l ( - 2 f l  ~ C3(fl, h))=O 
V 7 Z d { x , x ' ) :  x ~  V , x ' e  V r 

Hence the free energy 

(49) 

F(h)= lim IVl-' log~(Vl~vc) 
V i" Z d 

(50) 

exists and does not depend on the boundary condition ~v,.. 
The function F( V, hi0) is bounded, differentiable, and convex because 

d 
~F(V ,  h l O ) = f l l V I - ' Z  <r ~.o > o (51) 

.x-eV 

and 

d 2 

dh,_F(V, hlO)=flzlVl-2 y' y" 
) , ' E V  x ' E V  

(< ~o:,.~o,.,> v.o-  < ~o,.> v.o < ~ox,> v.o)/>0 

(52) 

where the last estimate follows from the FKG. The same is true for 
F( V, h I o o) and by the monotonicity in the volume the RHS of (44) is less 
than 

IAI 
I Vl Z (<q'-,-> v.~ - <q'x> ~,.o) - IAI d .,.~v f l d h  

- - - - - ( F ( V ,  hloo)-F(V, hlO)) (53) 

Functions F( V, hi0) and F( V, hl oo) have a common limit F(h) which is 
also convex. Hence as soon as (d/dh) F(h) exists, the RHS of (53) tends to 
0 as V/" 7/d, implying the global uniqueness. 
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The differentiability of F(h) follows from ref. 4, where the convergent 
polymer series for F(h), h E (hg'(fl), h*_ ](fl)), was constructed. This series 
can be differentiated term by term, which gives the value of (d/dh) F(h). 

9. T H E  D E P E N D E N C E  O N  T H E  B O U N D A R Y  C O N D I T I O N  

For any domain V denote by 6 V its external boundary 

OV= {x' ~ V": 3(x, x'), x ~  V} (54) 

Clearly the state (.)v.o,,c depends only on q~av and we freely use the 
notation ( - )  v.o,,.. 

Take a sufficiently large N, and let V~, V2 be cubes of linear size 2N 
and 4N: all cubes considered in this section are assumed to be centered at 
the origin. Consider now a domain V_~ V 2 whose boundary 3 V m a y  coin- 
cide in part with the boundary of a cube V~, _~ V2. We assume that the 
boundary condition ~ v, is such that ~ v  equals q~k) at all sites of ~V which 
do not belong to 6V'~, where on the set 6Vc~JV~, ~.,. can differ from k on 
at most v /N  lattice sites. Introduce the event #o = { q~ v: g2(q~ v) c7 V, # ~ } .  
Then 

( I,~o( q~ v) ) v.,~,,. <~ e-CTIP'h)N (55) 

To see this, denote, for q~v~o~o, by s the connected components of 
g2(Cpv). By the construction every g2~(~0v) touches 6V and there exists at 
least one component intersecting Vj. Without loss of generality we suppose 
that g2~(~0 v) is such a component. This leads to the estimate 

( I ~o( r v) ) v,o,v <~ e2#C4(llJ') v"~ ( I ~o( ~ v)) v,k 

e 2flC4(fl'h) ~ N///N e -cs(tm, iN[ 1 + C8(fl, h)] ~ 

<~ e -cT(a'hm (56) 

Here, in the first inequality, we used (38), reducing the problem to the 
calculation for the stable boundary condition ~0 (k~. The second 
inequality follows in a standard way from the cluster expansion con- 
structed for ( - ) v . ,  in ref. 4. Namely, there are at most v /N  possibilities 
to choose the site of 5V which is touched by /2] and the sum of the 
statistical weights (4) of all possible g2~ touching this site is less than 
exp[-Cs( f l ,  h)N].  (The bound takes into account the fact that the 
diameter of O~, and hence [I2]1, is not less than N). The constant 
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Cs(fl, h) estimates the sum of the statistical weights of all possible g2~ 
touching a given lattice site and [ 1 + Cs(fl, h)] "/~ estimates the statistical 
weight of all possibilities to choose f2~, i :/: 1. The whole estimate makes use 
of the standard fact that the statistical weight of f2 is the product of the 
statistical weights of g2i and is an upper bound for the probability o f /2  
(for definitions and details see ref. 4). The third inequality is trivial for 
C7(fl, h) = 0.5C5(fl, h) and N large enough. 

Denote by (~Oo1~)v.~,.,. the expectation of ~o o conditioned on the 
complement of #o. This means that there exists a cube V'~ ~_ Vt such that 
~o,. = q,,.-(k) for all x~fV'~ . It is then a standard consequence of the polymer 
expansion that for some constant Cg(fl, h) 

l< (PO I ~ 0 >  V,~,.~ - -  < (flO> v, k l ~ e--Cg(fl'h)N (57) 

Together with (55) and (27), this gives us 

- < CPo) v.k I = I < Iwo) v.~,,~ (< q~o I~o> v . ~ , . . -  < ~~ v.u) 

~ - <q~o> v.k)l + <I~;> v,~ov,. (<r o> v,O,.,- 

<~ e-CT~a'h~u C2(fl, h) + e-c~l/J, hlN 

<~ e-C~o(fl ,h)N (58) 

where Cio(fl, h) =0.5 min(CT(fl, h), C9(fl, h)) and N is large enough. 
Now we extend (58) to a wider class of boundary conditions. Let V 3 

be the cube of linear size 6N. Consider a domain V~_ V3 which is a 
scaledup version of V considered before and suppose that the boundary 
condition ~ w is such that ~ v  equals ~o tk) except for at most (x /~)  2 lattice 
sites belonging to gVc~SV'3 (where, as before, V~___ V 3 is a cube). Define 
~i = A;\Ai+~, where A i is a cube of the linear size 6 N - 2 i  + 2. Let I2")(~p v) 

�9 ^ ( k D  be a union of the connected components of the set {x ~ V \ A i +  l q~.x-:/: YJx / 

adjacent to V". Introduce disjoint events 

I la'"(q,v) 6,1 
N--'I c 

i 1 

(59) 

If q~vE#,., then the boundary contour I2(cpv) contains at least N v / N  
sites. Hence one has, similar to (56) or (40), the following estimate for the 
probability of d~ 
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< I,%( (p v) > v. '~a; <~ e2#C4tP" h H v/-N~2< 1~.( q~ v) > v. k 

e',#c.~r e - cs~BJ,) ~ N 

e-CT(B,h} N x/rN (60) 

For qver one can apply (58) to the domain V; such that V ~ w f V i =  
(V\12~(cp v ) )w  A~. This gives us the bound 

[<q~o[ ~> v.q%.,.-- <~~ ,<hi <~ e-c'~ 

Combining (60), (61), and (27), we conclude 

(61) 

I<~o) ,:,~,.,. 
N - - I  

-<~Oo>1<,1 = ~ <l~,>v.~.,~(<cool~>v.~.,~- 
/ 1 

+ < I~,.> v.o,.., (< ~o Ir ,<o,.,-- < q'o> v,,) 

e -C,o~/~.h~N + e -c'TllJ'h~N'/~Cz( fl, h) 

<~ 2e - cm(/l./,)N 

<r v.~) 

(62) 

Expression (62) is a version of (58) which is weaker by the factor 2 in 
the RHS, but is applicable to the wider class of boundary conditions 
containing up to (x/N) 2 unstable points instead of only v/-fi required 
for (58). 

The argument leading from (58) to (62) can be iterated several times. 
For example, the next step is the following. We extend (62) to the wider 
class of boundary conditions. Let V4 be the cube of the linear size 8N. Con- 
sider a domain V~  1/4 which is a scaledup version of V considered before 
and suppose that the boundary condition C~v,. is such that ~6v equals r 
except for at most (x /~ )  3 lattice sites belonging to dVc~6V'4 (here V~_~ V4 
is a cube). Define 6 i = A i \ A i + l ,  where Aj is a cube of the linear size 
8 N - 2 i  + 2. Let 12c~)(~o r-) be a union of the connected components of the set 
{x  e V\A~+ i' r :~ q~!,.k~} adjacent to V". Introduce disjoint events 

r {~ov: IQ'"(r v)~611 >/(v/-#)-',..., I~"-1'(r v) n6,_ 11 >/(v/fi) "-, 

112';I(cP v) n 6; [ < (v/rN) 2} (63) 

i 1 
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If q~v~8,., then the boundary contour g2(q~v) contains at least 
N(x/~)-' sites. Hence one has the following estimate for the probability 
of go: 

( I<.(cp v) ) '<oar ~< e21m4qS'h)~'/-u)'( I~rc (q~ v ) )  ,<1, 

<~ e2pC4(p,h )( x/~)s e - Cs{/:J,h )( v . ' ~ ) 2  N 

e - cTIIm,) N{.,/-~)'- (64) 

which is obtained similarly to (56) or (40). 
For q~vE4 one can apply (62) to the domain V i such that W t o 6 W =  

(V\s to Bi.  This gives us the bound 

I(~0ol 4> ,<<.c- (~Oo> v, kl <~ e-c '~  (65) 

Combining (64), (65), and (27), we conclude 

N - - I  

I<~oo)v,<,,.-<~Oo)v.kl= =~ (/~)v,<,~((~ool4)v.<,,-<~Oo)v.k) 
i 1 

+ (I<.) v,,~,.~ (( ~Oo I g,.) v.<.,.- (~Oo) ,,,k) 

<~ 2e-C~oll~,hl U + e-CT~p,m NI,/~I'-C2(fl ' h) 

~ 3e  -Cl~ N (66) 

Expression (66) is a version of (58) which is weaker by the factor 3 in the 
RHS but is applicable to the wider class of boundary conditions containing 
(v/N) 3 unstable points instead of ~ for (58). 

After 2d iterations one obtains that for a cube V of the linear size 4 d N  
with boundary condition ~av containing not more than (v/N) -'a unstable 
points, i.e., for an arbitrary ~ w, 

]<~Po> v.~,.,.-- <q~o> v,k[ <~2de-C'~ (67) 

which obviously implies 

sup I(q'o> v.,~,.~- (~Oo> ,~<.,.[ <~e -c'la'h~4a'v (68) 

for Ct(fl, h) = C,o(fl, h) /8d  and N large enough. This finishes the proof of 
the Theorem. 

Note that an analog of (68) for any local function f(~Pa) can be 
obtained either by a similar argument or directly from (68) and the finite- 
volume version of (44). 
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APPENDIX 

To correct the mistake in ref. 4 one should replace the second 
paragraph on p. 560 of ref. 4 by the following. 

First we construct h~(fl). For this purpose we complete the set of 
elementary cylinders by all cylinders r/= (s k + 1, k) and v/= (F/, k, k + 1 ). 
Then for contours F = { 7 ~xt, 7,, yint.j} we redefine the statistical weight of F 
as 

~v( F) = Z-l(Supp(F)(e(r)'"'l) 
x w(7 ext) Z(Suppe(r) IIr 

X 1--[ W(7i) Z ( S u p p i ( F )  (tr 
i 

X 1-'I H'(Y int'j) ~(7-tnt'j(l(Ym' J)'S(~mt J))~ 

j 7_.('~ 'int'J(E(f')'S{};"t' ')) ) 

instead of (2.14). Obviously representation (2.33) remains valid for both 
3( V ck'~) and 3(V<k+l"l), but we do not have good bounds for ~(~l) and 
~(F). Hence the cluster expansion for log 3( V Ik" )) and log 3( V *k+ 1, .I) 
cannot be written immediately. Instead of this we introduce the truncated 
statistical weights 

~(~/) = min(~(~/), exp{ _ l f l  Irll Z(r/)} ) (2.46a) 

and 

~(F)=min(~(F),w(r,I-Iw()jim'-i)-lexp{--~fll~i~t'JlL(Ti"tJ)}) 
J J 

(2.46b) 

and the corresponding partition functions 3( V tk" )) and ~( V r247 L .)). 
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